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Abstract—Robots are increasingly assuming diverse roles in
physical interaction tasks with humans, evolving from mere
learners and collaborators to potential teachers in tasks re-
quiring physical skills. This shift is crucial in scenarios where
human teachers are scarce, establishing robots as an effective
means to augment teaching. Against this backdrop, this paper
introduces Play-to-Coach, a robot system built to coach humans
in physical tasks, focusing on air hockey puck repelling. Play-
to-Coach combines skill decomposition and adaptive teaching
strategies. Skill decomposition breaks down the complex task into
more manageable sub-skills for effective learning. Concurrently,
adaptive teaching, steered by a Multi-Armed Bandit algorithm,
flexibly adjusts the sequence of sub-skills in response to the
learner’s progression. Human subject experiments validate Play-
to-Coach’s effectiveness and discern which system features most
effectively facilitate skill learning outcomes and experience.

I. INTRODUCTION

Robots have significantly expanded their roles in various
physical interaction tasks with humans, evolving from learners
of human behaviors, collaborators, and assistants to potential
teachers in physical tasks [1, 2, 3, 4, 5, 6, 7]. This evolution
is particularly crucial in contexts with a scarcity of human
teachers or experts, positioning robots as a viable solution for
scaling up teaching efforts, especially in physical tasks where
one-on-one interaction is key for effective learning. However,
the task of teaching humans physical skills via robots intro-
duces several challenges, mainly due to the complexity and
continuous nature of these skills’ input and output spaces.
There is also the need to adapt effectively to diverse human
learning styles and physical capabilities while maintaining
learner engagement and motivation. This leads to our research
question: “How can robots autonomously coach humans
in two-player physical tasks, ensuring both good learning
outcomes and a positive learning experience?”

This paper focuses on a two-player physical task, specif-
ically air hockey. Such a class of tasks presents unique
challenges compared to single-player tasks. Existing ap-
proaches [8] to teaching these skills often rely on segmenting
expert demonstrations for learners to imitate, a method that
becomes increasingly complicated and resource-intensive in
multiplayer settings. Firstly, the collection of demonstrations
would necessitate the coordination of multiple participants.
Secondly, direct imitation may not be an optimal approach for
all learners, due to variations in individual physical capabilities
and the complexities of multiplayer dynamics.

To overcome these limitations, we present Play-to-Coach,
a robot system designed to coach humans in the skill of
repelling a puck in air hockey. The robot coaches the human

Fig. 1: A human learner learns to repel the puck into the goal
region with a robot coach. The goal region is located in the
middle of two ends of the table, bounded by the green box. In
our Play-to-Coach system, the human learner is given visual
instruction on how to repel the puck.

learner by playing with him/her, thus Play-to-Coach, shifting
from direct imitation to collaborative learning. The premise
of the system is straightforward: the robot serves the puck
from a fixed position to the human player, who then learns
to repel the puck into the goal from different angles that
mimic various real-world sports training scenarios, such as
badminton and table tennis. The primary goal of Play-to-
Coach is to provide the human learner with an effective puck-
repelling skill, as illustrated in Fig. 1. At the heart of Play-
to-Coach are two methods informed by previous research:
skill decomposition [8, 7, 9] with learned expert policies and
adaptive teaching [10, 11, 12].

Skill decomposition aims to decompose complex physical
skills into more manageable sub-skills for human learning [8].
The skill decomposition process in Play-to-Coach begins with
training a puck-repelling policy using constrained reinforce-
ment learning [13]. This specialized form of learning is
crucial to ensure that the actions generated by the policy are
realistic and can be replicated by human learners. From this
trained policy, we generate diverse puck-repelling trajectories.
These are further decomposed into smaller, teachable sub-
skills through skill discovery [14]. Each sub-skill is defined
by a pair of puck states, detailing both how the puck moves
toward the player and the corresponding way for repelling it.
During the teaching round, the human learner is given visual



instruction on how to repel it, followed by the robot coach
delivering the puck in the corresponding direction.

Complementing the skill decomposition, Play-to-Coach in-
tegrates a Multi-Armed Bandit (MAB) algorithm [15] to
optimize the teaching sequence. This algorithm selects a
suitable sub-skill to teach at each learning round of interaction,
guided by the learner’s ongoing progress. By employing this
algorithm, Play-to-Coach dynamically adapts the teaching
sequence, enhancing learning efficiency and experience.

The effectiveness of Play-to-Coach was evaluated through
a human subjects experiment. Participants are divided into
four groups to interact with different variants of the Play-
to-Coach. The experiment not only demonstrates the overall
effectiveness of Play-to-Coach but also identifies which system
features most effectively support skill learning and enhance
user experience. Key findings include:

• Skill decomposition significantly improved learning out-
comes.

• Adaptive teaching, while not substantially enhancing
learning outcomes, was effective in reducing perceived
workload and building trust.

• Learner behavior was strongly influenced by their trust
in the learning outcomes and instructions provided by
the robot coach.

These results emphasize the importance of human trust, the
adaptability of sub-skills in physical robot coaching, and the
need for improved communication from the robot coach.

II. RELATED WORKS

A. Robot Learning

The field of robot learning, which integrates machine learn-
ing techniques into robotic systems, has garnered significant
attention due to its potential to enhance robot capabilities
across various tasks. This burgeoning interest is evident in
areas such as robotic manipulation [16, 17, 18, 19], nav-
igation [20], and human-robot interactions [21]. A pivotal
aspect of this field is the direction of knowledge transfer,
primarily from humans to robots, symbolizing a traditional
student-teacher mode where the robot assumes the role of the
learner. Techniques such as imitation learning [22, 23] and
reinforcement learning [24, 25] are central to this paradigm,
with knowledge relies heavily on human inputs, either through
reward design [26] or expert demonstrations [27, 28].

In this work, we diverge from this conventional framework
by exploring the feasibility of reversing these roles – posi-
tioning the robot as the teacher and the human as the learner.
This inversion of traditional knowledge flow still leverages
established robot learning techniques. In Play-to-Coach, we
demonstrate how robot learning can be utilized to empower
the robot to assume the role of a teacher, thus opening new
possibilities in the field of human-robot interaction.

B. Intelligent Tutoring System

The use of machines for educational purposes has a long
history, recently enhanced by advancements in deep learning.
Intelligent tutoring systems, the early pioneers of automated

teaching, have seen successful integration into many commer-
cial applications [29]. Incorporating concepts like machine
teaching [30, 31, 32, 33, 34] into these systems has shown
promise in improving human learning efficiency. Although
social robots have been explored for facilitating learning in
various educational domains [35, 36, 37], teaching complex
motor control skills through mere visual or verbal cues is still
challenging, typically requiring extensive practice. Modern
machine learning advancements enable more adaptive curric-
ula and detailed feedback for teaching physical skills [8, 38].
Further, robot-assisted teaching has been introduced to provide
explicit physical guidance in these tasks [39, 7].

Unlike existing intelligent tutoring systems, Play-to-Coach
operates on a two-player physical tasks. It reduces the need
for human expert involvement by autonomously identifying
both the expert and the sub-skills needed to teach. In addition,
the robot coaches the human learner by playing with him/her,
thus Play-to-Coach shifts from direct imitation to collaborative
learning to support more classes of tasks.

C. Physical Human-Robot Interaction (pHRI)

In the realm of physical Human-Robot Interaction (pHRI), a
key area of focus is how robots can assist humans in achieving
their hidden objectives [40, 41]. The primary goal for the robot
in such interactions is to deduce human intentions and adapt its
assistance accordingly. Action selection and human intention
inference are often considered separate processes [42, 43, 44].
To address this, a decision-theoretic framework like the Assis-
tant Partially Observable Markov Decision Process (POMDP)
has been developed, encapsulating the broader concept of
assistance in pHRI [45]. In this framework, robots integrate
reward learning and control modules for advanced reasoning
over human feedback [46, 47]. Another crucial aspect of
pHRI is modeling interactions as collaborative efforts be-
tween humans and robots, where both parties work towards
a common goal [48, 4]. In such scenarios, the joint optimal
policy, like rotating a table counter-clockwise, is initially
unknown to both agents. Their interaction evolves through
mutual adaptation [49, 50, 51]. Previous studies have shown
that machine learning enables robots to steer human behavior
towards a desired outcome [52, 53].

Our work focuses on a closely related but relatively under-
explored setting, where the robot is not only assisting humans
but also trying to teach humans certain skills physically. Such
a task requires more than just influencing humans but may
also require the robot to leverage expert knowledge to perform
explicit teaching.

III. SYSTEM OVERVIEW

A. Task Description

Our study is centered on an interactive air hockey game,
where we have developed a robot system to act as a coach for
human participants. In this setup, the human players are the
“learners”, and the robot assumes the role of the “coach”. The
robot coach is programmed to strike the puck with different
velocities and trajectories, creating a dynamic and challenging
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Fig. 2: The overall pipeline of Play-to-Coach. The process begins with training an expert policy in an air hockey simulator
offline, followed by the decomposition of puck-repelling trajectories into sub-skills. Then a robot coach teaches these sub-skills
to human learners through visual instruction and physical interaction. The red arrow indicates the “hitting state” while the blue
arrow indicates the “initial state” in the visual instruction.

game environment. The learner’s main goal is to repel the puck
into the goal, adapting to its varying incoming trajectories.

During each game round, the robot coach initiates play by
hitting the puck from a fixed position, thereby starting the
interaction. The human learner then aims to repel the puck
successfully into the goal in their defensive play. After each
round, the puck is manually reset, with the interaction limited
to one offensive move by the robot and a single defensive
response by the human learner, who is allowed only one hit
per round. Success in a round is defined by the puck being hit
into the goal, while failure is marked by any other outcome.
This game setting mirrors real-world coaching environments,
challenging the learner with a specific task and requiring them
to adapt to varying conditions set by the coach.

B. Conceptual System Model

Conceptually, the problem can be divided into two parts,
which establish a target task and a teaching task [54, 8, 7].
The target task is the original two-player task both the robot
and human are involved. Specifically,

Definition 1: The target task is a two-player Markov game
M = (S,A1, A2, T,R1, R2, γ) between two agents, 1 and 2,
where

• S is a set of target task states;
• A1 is a set of actions for agent 1;
• A2 is a set of actions for agent 2;
• T (s′|s, a1, a2) is a conditional probability function

on the next target task state s′ ∈ S, given the current
state s ∈ S and both agents’ actions a1 ∈ A1 and
a2 ∈ A2;

• R1(s, a1, a2, s′) is a target task reward function
that maps the target task state and players’ actions to
a real number for agent 1;

• R2(s, a1, a2, s′) is a target task reward function
that maps the target task state and players’ actions to
a real number for agent 2;

• γ is a discount factor.
At each step t, agent 1 and 2 observe the current task
state st and select their respective actions a1t ∼ π1 and
a2t ∼ π2, where πi the agent’s policy i for i = 1, 2. They
then receive the reward r1t = R1(st, a

1
t , a

2
t , st+1) and r2t =

R2(st, a
1
t , a

2
t , st+1), respectively. The next state is updated as

st+1 ∼ T (st+1 | st, a1t , a2t ).
In the particular task of air hockey, we are interested in

repelling the puck into the goal. We assume agent 2 is the
agent who initializes the game by hitting the puck toward the
opponent and agent 1 is the agent who aims to repel the puck
into the goal. We define the state s to contain two types of
information, one is the environment state se ∈ Se, which is
mainly the pose and velocity of the puck, and the state of
the agents who play the game, mainly the pose of the agents
q1 ∈ Q1, q2 ∈ Q2, where Q1, Q2 are the configuration space
of agent 1 and agent 2.

The next step is to define the teaching task. In this task,
the learner is defined as a tuple of its policy, denoted by πl,
and how the policy is updated, which is represented by U .
The policy takes the current environment state, denoted by se,
as input and outputs an action. The update function, denoted
by U , models how the learner changes its policy after each
interaction. It is assumed that the history of observation of the
state of the environment and the reward obtained by the learner
at time step t is Ht = [(se0, r

1
0), ..., (s

e
t , r

1
t )]. Consequently, the

student updates πl with any iterative functions conditioned on
the history of interactions: πt+1

l = U(πt
l , Ht).

Definition 2: Given a target task M =
(S,A1, A2, T,R1, R2, γ), a learner (πl, U), and a policy
to teach π∗

l for the target task, the teaching task is a POMDP
M̄ = (X̄, Ā, T̄ , Ō, Z̄, R̄, γ̄) for the coach, where

• X̄ is a set of teaching states: x̄ = (s, πl), for target
task state s ∈ S and learner policy πl;
• Ā is a set of actions: Ā = A1 ∪A2;
• T̄ ( x̄′| x̄, ā) is a conditional probability function on

the next state x̄′ ∈ X̄ , given the current state x̄ ∈ X̄
and coach’s action ā ∈ Ā;
• Ō is a set of observations: ō = (s, r), for target task
state s ∈ S and target task reward r;
• Z̄( ō | ā, x̄) is a conditional probability function on
the observation ō ∈ Ō , given coach’s action ā ∈ Ā
and current state x̄ ∈ X̄;
• R̄(x̄, ā, x̄′) is a teaching reward function that maps

current state x̄ ∈ X̄ , coach’s action ā ∈ Ā, and
next state x̄′ ∈ X̄ to a real number measuring the
effectiveness of teaching;
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Fig. 3: Diagram of the high-level finite state machine for robot
coach control during one round of the game.

• γ̄ is a discount factor.
We call this POMDP the Teaching POMDP. The objective of
this task is to enable humans to converge to the π∗

l as fast
as possible. Addressing the challenges in solving a Teaching
POMDP for teaching physical skills involves two primary
obstacles. Firstly, the extensive action space of physical tasks
exacerbates the complexity of deriving an optimal solution.
Secondly, the intricacies in modeling the transition function
which is the human learning model in physical tasks, present
significant difficulties. Data-driven methods of learning such a
human model [39], while effective for specific tasks, often fall
short in accurately modeling transitions across a diverse array
of physical tasks due to data scarcity. This limitation hinders
the reliability of long-term planning and searches for solutions
prohibitively expensive due to the large action space.

To address these complexities, an effective strategy is the
decomposition of the task into more manageable sub-tasks [8,
7, 55]. This not only facilitates the learning process for
learners but also streamlines the decision-making process of
teaching by focusing on discrete skills. Furthermore, adapting
the POMDP framework to an MAB problem by leveraging
empirical educational insights presents a viable solution [15].
For example, focusing on activities that provide more learning
progress can act as a strong motivational signal for human
learning [56] without knowing exactly what the human model
is. Such heuristics can be easily encoded into the reward
design in an MAB algorithm, thereby reducing dependence
on comprehensive human cognitive models.

Building on these findings and prior research, the overview
of Play-to-Coach, as illustrated in Fig. 2, is divided into three
phases. The process begins with training a policy in an air
hockey simulator using constrained reinforcement learning,
which creates a virtual expert model. This model is then used
to generate a variety of puck-repelling trajectories. Subse-
quently, these trajectories are broken down into smaller, more
manageable sub-skills via skill decomposition methods. For
this purpose, we utilize a Vector Quantized Variational Auto-
Encoder (VQ-VAE) [57], which effectively captures discrete
sub-skills similar to (author?) [14]. These sub-skills are
identified by a pair of puck states: one detailing the initial state
of the puck’s movement towards the player, see Fig. 4 on how

Camera
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hitting trajectory

arc center table boundary
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Fig. 4: Illustration of system setups and hitting path planning.
A high-speed camera is positioned above to capture the tra-
jectory of the puck. The robot coach offers visual instructions
regarding the repelling directions through a display as a
guidance to the learner.

the puck is hit towards the player and the other describing the
hitting state of the puck after it is reppelled. In the final phase,
an MAB algorithm is employed to select which sub-skill to
teach during each interaction with a human learner. During
these teaching rounds, the learner receives visual instructions
on the hitting state, after which the robot coach serves the
puck toward them in the corresponding direction.

C. System Setup

For the hardware setup of the system (see Fig. 4), we
mounted one 7-DoF Franka Research 3 (FR3) robot at one
end of an air hockey table and equipped each with a custom-
designed end effector of length 520 mm. The end-effector
was composed of an aluminum rod and a universal joint
connected to a mallet, see Fig. 4 bottom left. Universal joint
passively adapts the roll and pitch angles of the end effector
to ensure that the mallet surface is parallel to the table. The
cylindrical symmetry of the mallet warrants collisions which
are invariant to yaw angles. Additionally, we positioned a high-
speed camera with a resolution of 640×480 that runs at 240hz
to capture the trajectory of the puck, see Fig. 4 top left. The
display on the wall is used to provide visual instruction to
human learners. The air hockey table we use is 1.6 meters in
length (x−axis) and 0.72 meters in width (y−axis). The robot
and human participant are positioned at opposite ends of the
table, each approximately 1 meter from the table’s center and
aligned with the table’s width. The puck is placed at a fixed
position, 0.7 meters from the robot’s side, and centered along
the table’s width. In our experiments, the robot initiates the
game by hitting the puck with velocities ranging from [[0.5,
0.85], [-0.2, 0.2]] m/s, along x−axis and y−axis seen from
the robot’s coordinates.

On the software side, the hitting movement is the point-
point movement planned in the workspace, the 2-D plane of
the air hockey table. The hitting movement is implemented by
the lower-level joint space position controller given reference
position and velocity {qr, q̇r}. We build the high-level control
for skill teaching using a finite state machine similar to that
in previous work [58]. In our particular implementation, we
only use the Init, Ready, and Smash state. See the Fig. 3 for an



illustration. Each hitting round starts from the Init state, where
the mallet positions at a safe height from the table. When the
start command is active, the robot positions the mallet on the
table and enters the Ready state. If the puck is detected and
within the hitting zone, as shown in Fig. 4, the robot enters the
Smash state. The hitting and stop points are calculated based
on the desired hitting direction and velocity to teach specific
skills. For each teaching round, a hitting movement consisting
of a hitting trajectory and a stopping trajectory is planned in
the Cartesian space based on two arcs given the start, hitting,
and stop points. After hitting the puck, the robot will return to
the Init state and wait for the renewed start command. FR3 has
the extra redundancy for Cartesian trajectory tracking, the joint
velocities can be calculated as q̇r = J#(qr)ẋee+N q̇r. ẋee is
the desired Cartesian velocity, J# and N are the generalized
inverse and the null space projection matrix. Therefore, the
null-space joint velocities need to be optimized in real-time
within the robot’s joint maximum velocity constraints for
hitting movement implementation. An Anchored Quadratic
Programming (AQP), proposed by [58], is utilized to derive
joint velocities and improve the hitting quality by adding
an optimized hitting configuration as a reference along the
hitting direction and position. Consequently, a real-time hitting
trajectory of joint velocities without collisions that satisfies
the constraints of the robot’s physical and hitting movement
is derived.

IV. SYSTEM COMPONENTS

In this section, we elaborate on the process of acquiring sub-
skills and detail the use of these skills within an MAB-based
adaptive teaching algorithm.

A. Expert Policy Acquisition

The initial phase of Play-to-Coach focuses on developing
an expert policy, πθ, which serves as a proxy of π∗

l , for
playing air hockey. This is achieved by training within a
simulated environment. The aim is to establish an expert
policy, parameterized by θ, that is adept at repelling the puck
into the goal in a way that is replicable and understandable
for human learners.

Training an expert policy for high-speed physical tasks like
air hockey presents significant challenges due to numerous
geometric, mechanical, and safety constraints. For example,
in an air hockey game, the player must avoid actions that
could damage the environment. It also has to operate within
its physical capabilities, not exceeding its range of motion
or velocity limits. Crucially, it should also limit its action
space to mirror the range typical of human actions, ensuring
that the policies can be later transferred to human learners.
These constraints are not accounted for in the task’s reward
function, yet they are essential for successful policy training.
In essence, the reward function does not adequately specify
these important considerations. As a result, standard deep
reinforcement learning methods are generally ineffective in
producing suitable policies since they struggle to incorporate
these vital physical constraints.

Fig. 5: Simulation environment based on PyBullet [59] used
to train the expert policy. The puck is spawned randomly at
the opposite side of the table and the 3-DOF robotic arm is
trained to repel the puck into goal.

To effectively incorporate the constraints critical for policy
training, we formulate the air hockey game as a Constrained
Markov Decision Process (CMDP) and solve it using a ded-
icated CMDP solver. We build our CMDP upon the standard
two-player air hockey game, which is the target task defined
in Section III-B). Assuming agent 1 is the expert, we focus on
training agent 1’s policy to reactively repel the puck. To isolate
the reactive policy training from the wider task of inferring the
opponent’s strategy in the sequential game, we segment the
game into single-interaction episodes in which the agent only
repels the puck once. A simulated environment emulating the
real-world air hockey setup hosts a robotic arm with three
degrees of freedom. The air hockey game is modeled as a
CMDP for agent 1 with the following objective:

max
θ

Est,at,st+1

[
Γ∑

t=0

γtR1(st, a
1
t , st+1)

]
s.t. c(q1t ) ≤ 0.

(1)
Here, q1t ∈ Q1 represents the controllable joint state of the
robotic arm, and st = [q1t , s

e
t ] comprises the state of the

environment and the arm configuration, with c(·) mapping the
state to constraint values. In the air hockey game, we consider
two constraint types — position, and velocity — to ensure
operational compliance with the arm’s capabilities and task
requirements. Agent 2’s action and pose are omitted since the
puck state is directly generated by the simulator without the
need for a hitting action.

To solve the CMDP formulated above, we employ the
Acting on the TAngent Space of the Constraint Manifold (AT-
ACOM) algorithm with Proximal Policy Optimization [60],
detailed in [13]. ATACOM adeptly manages various forms
of constraints during policy learning and is compatible with
model-free reinforcement learning algorithms, which are cru-
cial given the missing dynamic models of the humans we aim
to emulate. This method narrows exploration to relevant areas,
thus accelerating the learning process. Our reward function
encourages the robotic arm to repel the puck rapidly and hit
it into the goal as fast as possible. Further elaboration on it
is provided in the supplementary materials. After simulation



training, we gather the expert policy πθ, which will be used
to discover sub-skills in the subsequent sections.

B. Skill Decomposition

We extract the physical “skills” from the learned expert
policies. We define our sub-skills through a pair of target task
environment states, which encompasses the velocity and pose
of the puck, following the approach of [14]. Specifically, this
pair of skills includes the initial state se0, which includes how
the puck starts to move toward the learner, and the hitting state,
seh, which describes the state of the puck after it is struck.

For each policy trained using ATACOM, we collected
trajectories by generating different initial states, se0, but with
a fixed position and recording how the trained policy would
repel the puck, especially the hitting state seh. We filter out
those trajectories where the policy failed to repel the puck
into the goal and only keep those successful trajectories. To
extract discrete skills from the trajectory, we follow Campos et
al. [14] to use VQ-VAE [57] to extract the skill. One may also
use other clustering algorithms to achieve a similar purpose
to replace VQ-VAE. Given n pairs of states {(se0, seh)}n, we
deploy a VQ-VAE to learn the discrete skills.

The VQ-VAE comprises an encoder ϕ and a decoder
ψ, it first passes the input through the encoder ϕ, which
outputs a continuous representation, e = ϕ((se0, s

e
h)). This

representation is then quantized to a discrete latent variable
zq through a nearest-neighbor lookup in the embedding space
E = {e1, e2, . . . , eK}, where K is the number of embeddings,
which are randomly initialized vector. The quantization pro-
cess can be formally represented as follows:

zq = ek, k = argmin
j

∥z − ej∥2. (2)

The decoder ψ is then used to reconstruct the input from
the discrete latent variable, i.e., (ŝe0, ŝ

e
h) = ψ(zq). The loss

function for VQ-VAE is composed of three terms: a recon-
struction loss, a quantization loss, and a commitment loss.
Reconstruction loss ensures that the decoded output closely
matches the original input, quantization loss maintains the
effectiveness of the embedding space, and commitment loss
stabilizes the training by penalizing large changes in the
encoder’s output space. These can be formulated as:

Lrecon = ∥se0 − ŝe0∥2 + ∥seh − ŝeh∥2, (3)

Lquant = ∥sg(z)− zq∥2, (4)

Lcommit = β∥z − sg(zq)∥2, (5)

where sg denotes the stop-gradient operator, and β is a
hyperparameter that controls the weight of the commitment
loss. Each skill is represented as a discrete latent variable
in the embedding space of the VQ-VAE. By decoding these
embeddings, we can recover the initial state and hitting state
and use them to guide the human learner. As a result, the skill,
ω is then represented by the pair of states ω = (se0, s

e
h). The

target now becomes for each se0, we aim to train humans to
repel the puck to the goal. Since the latent space is discrete,

Algorithm 1 Multi-Armed Bandit Teaching Algorithm with
Softmax Exploration
Require: Sub-skill set Ω, total training rounds L, observation win-

dow size d, training instance counter J , exclusion threshold, τ .
0: Initialize J(ω)← 0 for each ω ∈ Ω.
0: Initialize r(ω)← 0 for each ω ∈ Ω.
0: Z ← Sample(Ω, n).
0: for l = 1 to L do
0: if Ω = ∅ then
0: break
0: end if
0: Compute P (ω) = exp(r(ω))∑

ω∈Z exp(r(ω))
, ∀ω ∈ Z.

0: Sample sub-skill ω from P (ω).
0: Update r(ω) post-teaching ω using Eq. 6.
0: J(ω)← J(ω) + 1.
0: if J(ω) > τ and

∑J(ω)

j=J(ω)−τ

Cj

τ
= 1 then

0: Ω← Ω \ {ω}.
0: Z ← (Z \ {ω}) ∪ {ω′} for some ω′ ∈ Ω \ Z.
0: end if
0: end for=0

we are able to obtain a discrete number of sub-skills to teach.
However, on the downside, to effectively train a VQ-VAE, the
size of the latent space, K, must be relatively large to ensure
convergence. In practice, we do not need all K embeddings
as some of them might be similar to each other. Therefore,
in practice, after decoding the embedding into sub-skills, we
merge similar sub-skills based on the state similarity and
sample 15 sub-skills for teaching.

We prefer to use the puck’s state after being struck by the
learner as a basis for our skills over expert trajectory segments
for two main reasons. Firstly, imitating exact trajectories in
high-speed sports is challenging; the critical aspect is the tra-
jectory’s outcome or the resulting state of the puck. Secondly,
allowing learners some flexibility rather than strict adherence
to expert paths facilitates the utilization of individual strengths
or preferences. This can be more beneficial for personalized
coaching, enabling tailored training that aligns with a player’s
preference.

C. Adaptive Teaching Sequence

After discovering the full set of sub-skills, we need to
determine the sequence for our robot coach to teach them to a
human to enhance learning efficiency. We define this sub-skills
sequencing challenge as a Multi-Armed Bandit Problem. With
the set of sub-skills acting as the action space for our robot
coach, denoted by Ω = {ω1, ω2, . . .}, our goal is to select a
sequence of teaching skills that maximizes the human learner’s
efficiency.

The vast number of physical skills discovered, coupled
with the lack of initial information about students’ proficiency
levels, compounds the complexity of selecting an optimal
teaching sequence. To tackle this, we adapt the “Zone of
Proximal Development and Empirical Success” (ZPDES) algo-
rithm [15], which simplifies the global optimization challenge
into a dynamic local skill selection process. More importantly,
the dynamic local skill selection is steered by a heuristic



function based on empirical success-guided reward. It contains
two main components, the Zone of Proximal Development
(ZPD) and Empirical Success.

The key idea of ZPD is to narrow down the skill selection
candidates to a small subset of skills that learners are capable
of mastering independently, conditioned on their current abili-
ties. However, implementing standard ZPD requires a detailed
hierarchy of skills, categorized by difficulty and prerequisites,
which is challenging to establish for physical skills due to their
nuanced difficulty levels and intricate interdependencies. As a
workaround, we incorporate visual instruction as supplemen-
tary teaching signals, enabling learners to effectively acquire
skills. Specifically, we select a random subset of discovered
skills to form a “zone”, Z. When teaching a skill ω = (se0, s

e
h)

from Z, we provide visual instruction on seh as an additional
guide to the learner. This strategy effectively leverages the
ZPD’s efficiency while circumventing the complexities of
mapping out a causal skill structure.

To efficiently select skills from the Z, we adopt the em-
pirical success rate as a measure of learning progress from
immediate feedback. We argue that skills leading to significant
learning advancements should be prioritized, as they are likely
to motivate learners more effectively [56]. Thus, our reward
function for the MAB algorithm assesses the learning progress
of each sub-skill as follows:

r(ω) =
2

d

 t∑
j=t−d/2

Cj −
t−d/2∑
j=t−d

Cj

 , (6)

where Cj equals 1 if the sub-skill ω is successfully executed in
the j-th training instance, d is the size of observation window,
and t is the total number of training instances of sub-skill
ω. This function compares the success rates of the latest d/2
instances with those of the previous d/2, serving as a practical
estimate of the progress of the performance. Sub-skills that are
either fully mastered or consistently unattainable yield zero
reward. Given the reward, we then apply softmax exploration
to choose the action. In practice, we set d = 4, and the size
of Z to 5.

In our system, we use the binary feedback to form a contin-
uous assessment of the learner’s behavior, similar to previous
works [61, 12]. This provides enough information for the robot
coach to track the learner’s progress, while being easy for the
robot coach to understand. Although a continuous measure,
such as repelling speed, may provide more information, it
would, in turn, require stronger interpretation capability on the
part of the robot coach. Therefore, in this work we decided to
use the binary score because it is simple and informative.

In addition, we set an exclusion threshold, τ , to remove the
sub-skill from the zone. If, after t > τ instances, the cumu-
lative success rate for the last τ instances,

∑t
j=t−τ

Cj

τ = 1,
shows consistent success, that sub-skill is excluded from the
zone. A new sub-skill is then randomly selected for inclusion.
Empirically, we set τ to 3. This sub-skill selection process is
illustrated in Algorithm 1.

V. RESEARCH QUESTIONS

Our experiments are designed to investigate the following
three questions:

1) How does the robot coaching system affect human
learning outcomes? We hypothesize that the discovered
sub-skills and adaptive teaching would both leading to
better human learning outcome in terms of performance.

2) How does the robot coaching system affect human
learning experiences? We hypothesize that the discov-
ered sub-skills and adaptive teaching will leads to a
better learning experiences in terms of lower perceived
workload, better usability and higher trust on the robot
coach.

3) What are the important factors that affect human learn-
ing outcomes and experiences? We investigate other than
the two components in Play-to-Coach, what are other
factors may affect the human learning outcome and
experiences.

VI. EXPERIMENT SETUP

A. Metrics

To answer the research questions, we use the following met-
rics in our user study, including both objective and subjective
measures.

label=0:

1) Success Rate Improvement: This is the main metric that
we use to evaluate the efficiency of different teaching
algorithms. In particular, when a human learner repels
the puck and the puck falls into the goal region, the
round is marked as successful; otherwise, it is marked
as a failure round.

2) Human Subjective Metrics: These metrics are to measure
human’s perceived experience with the robot coach.

B. Questionnaire

We ask the participants to answer the following questions
before the experiment starts: label=0:

1) Demographic Information: We collect the ages and gen-
ders of the participants.

2) Relevant Sports Experience: We obtained the previ-
ous sports experience of the participants related to air
hockey.

After the experiment, the participant is asked to answer the
following questions: label=0:

1) NASA Task Load Index [62]: we use the NASA Task
Load Index to collect human-perceived task load.

2) SUS Usability [63]: we use the SUS Usability form to
understand the human-perceived usability of the system.

3) MDMT [64]: we use the MDMT form to assess the
human perception of trust in the robot coach.

4) Customized Experience Questionnaire: we design a 5-
point Likert scale questionnaire and open questions to
understand human feedback.



C. Variants of Play-to-Coach

To assess the design choice of Play-to-Coach and the
important factors that affect human learning, we executed
controlled experiments with three variants of Play-to-Coach:
label=0:

1) Random: this variant uniformly samples hitting velocity
from the hitting range.

2) Partition: this variant uniformly partitions the velocity
range into 16 different discrete values and then applies
the MAB algorithms for teaching. The human learner is
not demonstrated how to repel the puck.

3) Random Skill: this variant uniformly samples the sub-
skill for teaching. The human learner is shown how to
repel the puck.

D. Detailed Procedure

The experiment is structured into four distinct stages: prepa-
ration, trial, training, and evaluation. During the preparation
stage, learners are provided with instructions about the task
and are allowed to engage in five trial rounds of the game.
In each round, there is one complete interaction between the
robot coach and the human learner, where the robot coach
strikes the puck and the human learner attempts to repel it.

During the trial stage, the human learner engages in 30
rounds of play with the robot. The objective of this stage is to
gather data on the learner’s initial performance, which serves
as a baseline to measure improvement post-training. The initial
assessment is used only to calculate the improvement made
by the human learner and is not used in the method. In these
rounds, the robot employs a random policy, where it selects a
velocity uniformly from a given range for each puck strike.

In the training stage, the robot would play according to
certain teaching strategies, as we illustrate in the variant’s
descriptions. Human learners are trained for 100 rounds of
the game. We allow the human learner to rest for 5 minutes
between different stages and 2 minutes during the training
stage. In the evaluation stage, the robot would deploy a
random policy - the robot would sample a velocity in the
given range uniformly. It lasts for 50 rounds to evaluate
human learning outcomes compared with the trial stage. In
total, one experiment takes 1 hour and 10 minutes to finish
including filling in the survey. To remove the influence of
prior experience of the game, participants are required to use
the non-dominant hand to play the game.

We recruited 30 participants from a university campus
to carry out the experiments. University IRB exemption is
acquired for the experiment. Due to significant fatigue during
the experiment, we removed the data from two players from
the analysis, resulting in 28 participants with ages ranging
from 18 to 32 years old (M = 25.64, SD = 3.82, 7 fe-
males) in total and uniformly assigned them to 4 groups
for experiments between subjects. All participants involved in
the study either possess a bachelor’s degree or are currently
pursuing one. We interviewed the participants about their prior
experience with air hockey; only one of the participants had
previous experience with air hockey before. Therefore, the

human subjects involved in the experiment are mainly novices.
Each participant received $10 for finishing the experiment.
In addition, to motivate the learning of the skill, participants
with a top-3 success rate among all participants during the
evaluation stage will receive an additional $20 as a bonus.

VII. EXPERIMENT RESULTS

The analysis was mainly performed using a 2x2 factorial
ANOVA to determine the influence of skill decomposition and
MAB-based adaptive teaching on human learning. The result
of objective metrics and subjective metrics are shown in Fig. 6
and Fig. 7 respectively.

A. Objective Analysis

1) How do discovered sub-skills help with human learning
outcomes?: We compare the improvement of the success rate
in different groups before and after training. The statistical
analysis showed that the skill decomposition leads to signif-
icantly better success rate improvement (F1,24 = 4.858, p =
0.037, η2 = 0.146). Subsequent post hoc examinations employ-
ing the Tukey HSD test revealed that these discovered sub-
skills and visual instruction significantly aid human learners
in improving their abilities efficiently (p = 0.037, Cohen’s d =
0.833). This support our hypothesis that the discovered sub-
skill is helpful to improve human learning outcome.

During post-experiment interviews, 12 of 14 participants in
the group who participated in skill discovery reported finding
the demonstrated visual instruction of the sub-skill beneficial
in their learning process. Particularly, that saves participants’
effort in exploration, allowing them to concentrate more on
low-level motor control aspects. Additionally, participants
were asked about the sub-skills they considered most useful.
The majority highlighted a specific sub-skill that involves
using the table boundary to create a reflective angle, allowing
the puck to be directed toward the goal.

2) How does the derived teaching sequence help with
human learning outcomes?: The statistical analysis showed
that neither the use of the MAB algorithm (F1,24 = 1.151,
p = 0.294, η2 = 0.035) nor the interaction effect (F1,24 =
3.338, p = 0.080, η2 = 0.100) appear to significantly improve
human learning outcomes, which rejects our hypothesis that
the adaptive teaching help improve human learning outcome.

We hypothesize that the inherent difficulty of physical skills
makes the MAB problem in our case more demanding than
the other educational domain. Therefore, we perform analysis
on the partition group and Play-to-Coach group. Although
the sub-skill to be taught is different, the number of sub-
skills humans are considered to have mastered using the MAB
algorithm differs significantly in these two groups Table I.
The number of skills mastered by participants in the partition
group is significantly less than that of the Play-to-Coach group.
We hypothesize that randomly partitioning the initial velocity
into partitions would lead to some hard cases that are hard to
master without explicit teaching or scaffolding. Then, purely
relying on the learner’s exploration of the solution might be
hard and inefficient [15]. This results in the situation where the



Random Partition Random Skill Play-to-Coach
0.0

0.1

0.2

0.3

0.4

0.5

0.6
In

iti
al

 S
uc

ce
ss

 R
at

e

Random Partition Random Skill Play-to-Coach
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fin
al

 S
uc

ce
ss

 R
at

e

Random Partition Random Skill Play-to-Coach
0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e 

Im
pr

ov
em

en
t

a) Success Rate Before Training b) Success Rate After Training c) Success Rate Improvement

Fig. 6: Objective measures.

Random Partition Random Skill Play-to-Coach
0

2

4

6

8

10

12

14

W
or

kl
oa

d

Random Partition Random Skill Play-to-Coach
0

2

4

6

8

10

Tr
us

t C
ap

ab
le

 S
ub

sc
al

e

Random Partition Random Skill Play-to-Coach
0

20

40

60

80

100

Ov
er

al
l S

US
 S

co
re

a) NASA TLX Workload b) MDMT Trust Capability Subscale c) SUS Usability Score

Fig. 7: Subjective measures.

TABLE I: Skill mastered by human participants in groups
using the MAB algorithm. The human learner is considered to
have mastered the sub-skill if they have successfully repelled
the puck into the goal three consecutive times when trained
with that sub-skill.

Group Partition Play-to-Coach
#Skill Mastered 5.00 ± 1.51 8.00 ± 2.51

robot coach would keep teaching the same set of sub-skills and
fail to cover the others, thus, worsening the human learning
outcome.

B. Subjective Analysis

1) Do the teaching methods help reduce human workload
and increase usability?: Now we shift our focus to human-
perceived training experience, we first assess human-perceived
workload. We aggregated the responses to the NASA TLX
form to obtain a single score for each participant averaging
the score from six categories. We again run a 2x2 factorial
ANOVA to analyze the data. Given the analysis result, the
interaction effect shows significance in reducing the human
perceived workload (F1,24 = 13.430, p = 0.001, η2 = 0.335).
Post hoc comparisons using the Tukey HSD test revealed a
significantly higher perceived workload in the random skill
group than Play-to-Coach group (p = 0.012, Cohen’s d =
1.82), highlighting the importance of focused and adaptive
coaching in the human learning experience. Furthermore, it
was observed that the sub-skill involving the puck being hit
to the side was taught after the sub-skill involving the puck
being hit to the center in the generated adaptive curriculum.
This may contribute to the reduction in perceived workload.

However, despite the human perceived workload is re-
duced, when considering the SUS usability scores across
different groups, we did not observe significant difference
among groups. This outcome suggests that, despite the varying
teaching methods, the overall usability of the system from the
user’s perspective remains consistent.

2) How would the teaching system affect human perceived
trust in the system?: We used the MDMT questionnaire to
collect human trust in the robot coach and only calculated
the capability subscale since there is no social interaction
between the human subject and the robot coach. We again
run 2x2 factorial ANOVA to analyze the data. We found
that the MAB algorithm improves human trust in the robot’s
capability. The results show the MAB algorithm which enables
focused training leads to higher human trust (F1,24 = 6.149, p
= 0.021, η2 = 0.195) and post-hoc test using Tuky HSD test
shows the significance (p = 0.021, Cohen’s d = 0.937). This
is also partially supported by our survey. In the customized
questionnaire, we asked human participants in groups not
using MAB algorithms about any improvement that can be
made to the current system; 6 out of 14 mentioned more
focused training. We found that such focused training can
be easily perceived by human participants without explicitly
telling them, thus leading to a better image of a coach in the
human mind.

Although adaptive teaching increases the human learner’s
confidence in the system, we observed that the human learner
may not use the learned skill during evaluation if the eval-
uation case is similar to the training case. Therefore, for
the Random Skill and Play-to-Coach groups, we conducted
post-questionnaires asking participants why they did not use
the learned skill during evaluation, if there was any reason.



Participants’ feedback revealed two main reasons for their
reluctance to use the learned skills: 1) lack of confidence in
mastering the skill ( “I am not sure I can hit it in”), and 2)
mistrust of the robot’s visual instructions ( “I think hitting in
other ways is easier”). Such a trust problem is exacerbated
in physical training tasks because there’s often no default or
standardized way to perform certain actions, as there is in
some other training domains.

Trust in the Instruction: Trust in the instruction is closely
related to the robot’s ability to clearly explain and justify its
teaching methods. We found that 7 of 14 participants in the
group using skill decomposition desired more comprehensive
explanations of the visual instruction when further asked for
suggestions for the system. This echoes the importance of
transparency in AI systems as suggested by [65]. The need for
clearer justifications is indicative of a gap in the robot’s com-
municative competence, a crucial factor for establishing trust
in HRI as per the Technology Acceptance Model (TAM) [66].
The TAM suggests that perceived usefulness and ease of use
significantly influence the acceptance of technology, which in
this case, relates to the robot’s credibility.

In addition, the adaptivity of teaching robots, particularly
in skill discovery, is crucial in the distrust problem. Current
methods, like MAB algorithms, do not fully accommodate
individual learner differences such as skill levels or personal
preferences. This shortcoming can result in sub-skills being
perceived as not fitting their preference according to the open
question in our questionnaire.

Trust in the Outcome: The concept of outcome trust in
robot-led physical training intertwines with the learner’s belief
in their ability to apply the skills effectively. Our findings align
with Bandura’s Self-Efficacy Theory [67], which posits that
self-confidence in skill execution is critical for learning. In
our task, the effect is amplified since the task is highly dy-
namic. This correlation is evident in participants’ reluctance to
employ skills they were not confident about. Hence, enhancing
feedback mechanisms in line with suggestions from [38] might
bolster self-efficacy and trust in training outcomes.

C. Core Findings

In conclusion, we show that sub-skills with visual instruc-
tions from the learned policy effectively enhance learning
outcomes, yet the adaptive teaching algorithm alone is insuf-
ficient for significant improvement in complex physical skills.
Its effectiveness is primarily seen in enhancing the human
learning experience, notably by reducing perceived workload
together with skill decomposition and fostering trust through
focused training.

These findings underscore the critical role of human trust
and the adaptability of sub-skills in the realm of physical
robot teaching. Trust in the outcomes and instructions from
the robot coach greatly influences learner behavior, suggesting
the need for improved communication between the robot coach
and the human learner. Furthermore, the current approach to
skill decomposition overlooks individual human preferences,
leading to a lack of adaptability and varied perceptions of the

utility of sub-skills and guidance. This highlights a clear need
for more personalized and adaptable approaches in robotic
teaching systems to better cater to individual learner needs
and preferences.

VIII. LIMITATIONS

One area for improvement is conducting a larger-scale hu-
man subject study to further validate and support the findings
presented in this work. The other major limitation of our work
is the focus solely on the short-term effects of the teaching
results. This scope restricts our ability to understand the long-
term retention and application of skills learned through the
robot coaching system. It is important to acknowledge that
the effectiveness of teaching methods, especially in complex
physical tasks, is often more accurately assessed over an
extended period. This prolonged evaluation could provide
valuable insights into how well skills are retained, the long-
term impact of reduced workload and enhanced trust, and
the effectiveness of adaptive teaching strategies over time.
Additionally, observing long-term effects could reveal more
about the evolving relationship and trust dynamics between
the human learner and the robot coach, as well as potential
shifts in learners’ preferences and adaptability to the taught
skills. Future research could aim to address this limitation
by conducting long-term studies, thereby offering a more
comprehensive understanding of the impact and efficacy of
robotic coaching systems in physical skill learning.

IX. DISCUSSION ON GENERALIZATION

In Play-to-Coach, we focus on one task – air hockey. While
we have found interesting results that can be generalized to
several different scenarios, generalization to additional tasks
will be an important step in demonstrating true generalization.
In this section, we discuss how Play-to-Coach can be general-
ized to additional tasks. To extend the teaching system to more
complex, high-dimensional physics problems, three key factors
are crucial: skill decomposition, skill structure discovery, and
multimodal interaction.

First, a more general approach to decomposing skills is
crucial for further scaling the system to more complex tasks.
Decomposing complex skills into more manageable sub-skills
is a common strategy for simplifying tasks. Existing frame-
works often represent sub-skills as trajectory segments, a
method that simplifies skills into sequential steps. However,
this approach may not always be optimal because it assumes
consistent, predictable skill execution, which doesn’t fully
account for the dynamic and varied nature of human or system
interactions in complex environments. Interactions with other
participants can drastically alter the context and execution
of a task. An alternative is a goal-oriented representation,
where sub-skills are defined by their goals rather than specific
actions. This strategy enhances flexibility and adaptability,
allowing for different methods to achieve the same goals and
accommodating differences in abilities, environmental factors,
or task demands. In our system, we use the resulting puck
state as a goal to represent sub-skills. Identifying such a



goal-oriented representation is crucial for generalizing our
approach.

Second, in the context of complex, high-dimensional phys-
ical problems, it is not enough to identify the sub-skills;
the structure of these sub-skills must also be elucidated.
Mathematics education benefits from a natural decomposition
into different concepts, which facilitates the decomposition
of complex knowledge. However, without understanding basic
concepts such as addition and multiplication, the acquisition
of more complex knowledge becomes a challenge for the
learner. It is therefore essential to understand the structure
of knowledge, for example in the form of prerequisites, if
one is to complete complex tasks that involve a hierarchical
learning process. One straightforward solution to this is to use
the learned expert policy to rank the sub-skill to be learned
according to its own success rate. However, this may not
accurately describe the difficulty a human learner may perceive
due to different learning preferences. One solution is to use
the initial assessment of a large group of participants to learn
the structure based on human perceived difficulty.

Finally, we must expand the interaction modes. Our studies
with human subjects revealed a clear preference for expla-
nations of the robot coach’s behavior. This is particularly
important for more complex problems, where physical in-
teraction alone may not be sufficient or the most effective
means of conveying the information for learners to grasp the
underlying concepts. It is clear that supplementary modalities,
such as language or visual aids, can provide information that
is difficult to convey through physical interaction alone. This
is in line with the findings of [38].

X. CONCLUSION

In conclusion, we introduce Play-to-Coach, an autonomous
robot coaching system that demonstrates its effectiveness
in enhancing the learning of physical skills. Our findings
highlight that skill discovery from learned policies enhances
learning outcomes, while adaptive teaching notably improves
the overall learning experience. Furthermore, our research
underscores the importance of fostering human trust and adapt-
ability in interactions with robot coaching systems. Future
work could focus on refining these systems for a broader
range of physical skills, exploring long-term learning impacts,
and enhancing personalization to cater to diverse learning
styles and preferences. This will further solidify the role of
autonomous robots in aiding humans to learn physical skills.
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